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We consider one-dimensional discrete models for dynamic fragmentation with mass consumption.
The fragmentation cascade is randomly interrupted by inactivation of fragments. Exact solutions
are obtained. The scaling regimes for the average number of fragments n(s,t) with mass s at time
t are investigated for short and long times. We also study numerically the fluctuations in the size
distribution of inactivated sites (intermittency analysis).

PACS number(s): 05.40.+j, 05.70.Ln, 82.20.—w

I. INTRODUCTION

Fragmentation processes appear in several areas of
physics. They can be essentially classified as (i) processes
with mass conservation such as grinding and crushing a
mineral [1,2], polymer degradation (mechanical, thermal,
and radiation induced) [3-6], and droplet breakup [7-9];
(ii) processes with mass loss such as oxidation, melting,
and sublimation or dissolution of the exposed surface of
a porous solid [10]. The physics of the processes with
constant mass has been considered in the framework of
linear rate equations for continuous systems [11]. In par-
ticular, an unexpected loss of mass to zero-mass particles
(shattering transition) has been found [12] and a scaling
theory has been developed [13]. On the other hand, pro-
cesses with mass loss have been considered in continu-
ous and discrete systems. A scaling theory [14] has been
extended for linear continuous fragmentation processes.
Discrete models have been studied by means of compu-
tational simulations [15,16] and by analytical approaches
to rate equations [17].

Recently, intermittency has been found in particle and
nuclear multifragmentation [18]. In order to explain the
large nonstatistical fluctuations of the fragment-size dis-
tribution of the breakup of high-energy nuclei in nuclear
emulsion, a model of binary fragmentation has been pro-
posed [19]. In addition to the usual gain (breakup) term,
a loss term (randomly inactivating the fragmentation cas-
cade) has been introduced. An intermittent behavior of
the fluctuations in the cluster-size distribution has been
found for asymptotic times.

In this work we consider some one-dimensional dis-
crete models for fragmentation with mass consumption
and inactivation. The system to be consumed is mod-
eled by clusters of occupied sites in a lattice. The attack
of the external fields (chemical or physical) is described
by site consumption rates. We assume that each occu-
pied site of the lattice has the same probability of being
consumed. During the process of fragmentation a cluster
of s sites is inactivated randomly with a given rate. This
means that this cluster is frozen and its sites cannot be
consumed anymore. It represents, in some sense, a non-
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reactive portion of the system. For long times, only inac-
tivated clusters can be present. The dynamical process
of inactivation can simulate in an easy way a heteroge-
neous system, in which the several portions have differ-
ent reactivity. Then each portion can be consumed in
different times. For a given time scale, some clusters are
consumed and others not. The inactivated clusters rep-
resent the latter. These models can be applied to study
the distribution of ash particles sizes resulting from the
combustion of porous media. This problem is very impor-
tant for ambiental pollution. Now, an inactivated cluster
represents the ash produced in the consumption of these
sites. After the total consumption of the porous media,
the ash particle size distribution can be evaluated. We
are interested in exact results of the rate equations for
the time-dependent size distribution of fragments and its
fluctuations. We found no intermittent behavior for long
times.

This paper is organized as follows. In the following
section we describe the models with consumption and
inactivation and we present the interesting macroscopic
quantities and the rate equations for the average number
of fragments with s sites at time ¢. In Sec. III we present
the analytical results for the model with inactivation in-
dependent of the size of the cluster. The model with in-
activation directly proportional to the size of the cluster
is presented in Sec. IV. We discuss the characterization
of intermittency and present our numerical simulations
in Sec. V. Finally, in Sec. VI we present some concluding
remarks.

II. MODELS AND RATE EQUATIONS

Consider an open one-dimensional lattice with a frac-
tion of its sites occupied by unit masses. Through attack
of the external field, an occupied site can lose its mass
and become empty. This happens at the rate a indepen-
dent of the position of the site. A fragment is a cluster of
occupied sites of the lattice. It is characterized only by
its size (or mass), which is defined by the total number
of sites belonging to the cluster. At time ¢t = 0 there is
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only a cluster of sg occupied sites. The initial fragment
can be divided in two new fragments when a site is con-
sumed. These two fragments can generate four new ones
and as long as this process evolves, a fragmentation cas-
cade is established. It can be interrupted by a randomly
inactivation of clusters, since the sites of an inactivated
fragment cannot be consumed. We consider that each
cluster of size s is inactivated with a rate b,. Now we
have two kind of occupied sites: those that can be con-
sumed (active sites) and those that are frozen (inactive
sites). The fragmentation process terminates when all
sites are inactive or consumed.

All properties are derived from the microscopic quan-
tities n(s,t) and m(s,t), the average number at time ¢
of clusters with s active and inactive sites, respectively.
Note that n(s,t) [or m(s,t)] is proportional to the prob-
ability that a site of the lattice belongs to an active (or
inactive) fragment of size s at time t. It is easy to write
the coupled linear equations governing the dynamics of
n(s,t) and m(s,t)

Edin(so,t) = —[soa + bs,|n(s0,t) , (1)

d -
pr n(s,t) = —[sa + bs]n(s,t) + kzz_:‘H 2an(k,t)

for s <so , (2)

%m(s,t) = b,n(s,t) forall s . 3)

Let us discuss the definition of some macroscopic quan-
tities. The number of active and inactive fragments
are defined by N,(t) = Y 2%, n(s,t) and by N, (t) =
32 ,m(s,t). Then, the total number of fragments is
N(t) = Np(t) + Npn(t). The total mass M (t) existing at
time ¢ is equal to the number of occupied sites at that
time. So we have that M(t) = 322, s[n(s,t) + m(s,t)].
Note that M(t) = M,(t) + M,,(t), where M,(t) is the
active mass and M,,(t) is the inactive mass. Another
interesting macroscopic quantity is the average fragment
size, which can be defined as (s) = M(t)/N(t). A similar
definition is used for the average size of the active (in-
active) fragments. The dynamic equations for all these
macroscopic quantities are readily obtained by summing
Egs. (1)—(3) for all s.

Equations (1) and (2) for n(s,t) can be viewed as a set
of sg first-order linear differential equations with constant
coefficients and can be rewritten as

d R
= () = Xi(t) , (4)

where 7 is the so-dimensional vector
(n(1,t),n(2,t),...,n(s0,t)) and X is an sg X so matrix
[20]. Since the matrix X is triangular, its eigenvalues
are the diagonal elements A\; = —i[a + b;]. The corre-
sponding eigenvectors v = (z%,z%,...,2%,0,...,0) can
be recursively determined through
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fori > j (5)

and a:; = §;; for i < j.

However, a closed form for these eigenvectors was only
found in the following cases: (a) b, = 0, a model without
inactivation; (b) b, = b, with b being a positive constant,
a model where each cluster becomes inactivated with the
same probability; and (c) b, = as, now the probability of
inactivation of a cluster is proportional to its size and a
is the consumption rate of a site.

The case b, = 0 has been already described in the liter-
ature [17]. In this case the mass is completely consumed
for asymptotic times and it has been found that n(s,t)
presents the expected scaling behavior for short times.

We must observe that the main difference concerning
fragmentation between this model and the one described
by Botet and Ploszajczak [19] is that we consider site
consumption instead of bond consumption. They have
considered a multiplicative breakup kernel, but when 8 =
0 and B8 = 1 with @ = 0 (in their notation), that model
is equivalent to ours. Note that in their model, contrary
to ours, the mass is constant since it is associated to the
sites.

III. MODEL WITH CONSTANT INACTIVATION
OF FRAGMENTS

Let us now consider that the inactivation rate of a clus-
ter is constant and independent of its size (b, = b, with
b > 0). All the macroscopic quantities must be either
active or inactive (or total). The dynamical equations
for the number of fragments are obtained by just adding
Egs. (1)-(3). We obtain that

INut) = aMu(t) — Qa+BNL() . (6)
d

ENm(t) = an(t) ) (7)
IN@) = aMa(t) - 2aN,(0) - (8)

The equations for the mass are obtained by multiplying
Egs. (1)—(3) by s and then adding them:

d
ZMa(t) = —(a+b)Ma(t) (9)
d
M () = BMa(1) (10)
d
M) = —aMy(t) . (11)

Although these equations can be easily solved for any ini-
tial condition (N, (0), M,(0), N (0), M,,(0)), we con-
sider here only the case M,(0) = so, N,(0) = 1, and
M,,(0) = N,,(0) = 0.

The active mass has an exponential decay and the inac-
tive mass grows up to bso/(a+b). Note that the inactive
mass diverges in the thermodynamic limit (s — 00).
The total mass is given by
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M(t) = (12)

So -
b (a+b)t)
a+b ( +ae
In the beginning of the fragmentation process [t < 1/(a+
b)], the total mass is essentially constant and when ¢ is
large it approaches the value of the inactive mass.
The number of active fragments

No(t) = [1+ so(te® — 1)] e~ (2atd)t (13)

increases, reaches a maximum at time ¢,, and decreases
exponentially. Let us consider the thermodynamic limit.
The time ¢, is given by ¢, = a~!In[(2a + b)/a + b]. For
short times [t < 1/(2a + b)], N,(t) increases linearly in
time, in the same fashion as the b = 0 case. The total
number of fragments in the thermodynamic limit

absg "
(a+b)(2a + b)

_ 2as e—(2a+b)t
2a +b

aso _
e (a+b)t

N() = a+b

(14)

also has a maximum at time ¢ty = 1/a In(2). This means
that the number of fragments reaches a maximum at the
same time as the model without inactivation. For short
times N(t) ~ soat(l + bt/2). If t < 2/b, the physics
is given essentially by the fragmentation process with-
out inactivation and N increases as N,(t). In this time
regime the fragment average size is (s) ~ t~1. In the
limit ¢ — oo, N(t) ~ Npn(t) ~ abso/[(2a + b)(a + b)].
Note that the number of inactivated fragments always
increases in time up to the asymptotic times.

We discuss now the microscopic quantities, the average
number of fragments with s sites at time ¢. All solutions
are obtained from Egs. (1)—(3). The average number of
active fragments is given by

n(so,t) = e (asotd)t (15)
n(k,t) = [(so — k —1)e™ 2% — 2(sg — k)e™*
+so — k + 1]e‘<k°+b)t for k< sg (16)

Except for the presence of the inactivation rate b in the
time decay, these expressions coincide with the ones for
the model without inactivation. For ka > b, we have
a behavior completely controlled by the consumption of
sites. In the thermodynamic limit, we have for short
times £ < 1/a the expected scaling form [21,22]

n(s,t) ~t¥s77 f(s/t%) , (17)
with z = —1, 7 = 0, and w = 2. On the other hand, for
ka < b, the inactivation drives the decay of the active
fragments.

For the average number of inactivated k fragments, we
have

(18)

m(sg,t) = b (1 _ e—(aso+b)t)

asg+ b

when k = so and
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_ b(so —k+1) —(ak+b)t
mk.t) = —— 55 (1 € )
2b(s0 — k) —la(k+1)+b]t
L0 (1 _ela
a(k+1)+b ( € )
b(so —k—1) —la(k
b S S 1 — e la(k+2)+b]t
a(k +2) + b ( € ) (19)
if k < sg. Now we consider the limit s9 — oo. Since

m(so,t) = 0 we do not have an oo cluster for asymptotic
times. On the other hand, we have that m(k, co) ~ s¢ for
all finite k. This means that we have an infinite number
of inactivated fragments with finite size for t — oo. In
fact, for k finite and ¢t & oo we have that

2bSo
ik, 00) = 2a2s¢
5 for ka < b . (21)

It is worth mentioning that the k=2 behavior is the same
as the one found in Ref. [19] for a similar model with
bond consumption. The expression for the average total
number of fragments is obtained from n(s,t) + m(s,t).
In the beginning of the process it behaves like the aver-
age number of active fragments and in the end like the
number of inactive fragments.

IV. INACTIVATION RATES PROPORTIONAL
TO THE FRAGMENT SIZES

We consider here the case of b, = as. Now the proba-
bility of a cluster to be inactivated is equal to the proba-
bility of a cluster to be fragmented in any two new frag-
ments in an unity time interval. The equations for the
macroscopic quantities can be easily obtained from the
equations for n(s,t) and m(s,t). However, these equa-
tions are difficult to solve. In this model, it is easier to
solve first the equations for the microscopic quantities.
From Egs. (1) and (2) we obtain that the average num-
ber of active k fragments is given by

e—2aaot

(1 — e‘zat) ekt for k<so—1

(22)
(23)

n(so,t)
n(k,t)

Il

We obtain also the following expressions for the average
number of inactivated k fragments:

(1 — e~ 2a%0t) (24)

N =

m(so,t) =

— 1 1 k —2at —2akt
m(’“’t)—ﬁ[m (1 k+1° )

for k<so—1 . (25)



6040

Let us consider these equations in the thermodynamic
limit sp — oco. We observe that we do not have terms
directly proportional to so, implying that m(k,t) for any
k is finite during the process. In the limit ¢ & oo we
have an infinite cluster or a collection of finite small clus-
ters described by m(k,o0) ~ (k + 1)~ (k < sp). This
means that either the initial fragment is inactivated in
the beginning of the process without the consumption of
any site or a site of the initial cluster is consumed. If the
latter case happens, two news fragments of very differ-
ent sizes so (in average) appear and the fragmentation
continues. There the iractivation is not so important for
the process. Even if a fragment is inactivated, the others
maintain the cascade of fragmentation with mass con-
sumption. The k~! behavior is the same found if bond
consumption is considered [19].

The mass of the active clusters can be evaluated from
the definition M, (t) = Y, kn(k,t). So we have that the
macroscopic active quantities are given by

Na(t) = e,
1— e—2asot

(26)

—2at

M,(t) = (27)

1 _ e—2at_
The number of active fragments is less than 1 because in
several samples entering in the average the initial frag-
ment is inactivated [for these samples N,(t) = 0]. So
the maximum of the number of active fragments occurs
in t, = 0. Near this time, N,(t) ~ 1 and is essentially
constant. In the thermodynamic limit the active mass
decays initially as M, (t) ~ t~!. This decay comes also
from the inactivation of the initial fragment, which im-
plies a considerable loss of active mass in average. For
short times (¢ <« 12/a), n(s,t) has the expected scal-
ing form (17) with w = 1, 7 = 0, and 2z = —1. The
w exponent is in agreement with the scaling relations
N,o(t) ~ t? and M,,(t) ~ t¢, with ¢ = w+2z(1—7) = 0 and
€ =w + 2(2 — 7) = —1. Here the inactivation is respon-
sible for the large mass loss. When the initial fragment
is not inactivated, the consumption of sites creates the
cascade of small active fragments and we have fragments
of all size scales present in the process.

V. INTERMITTENCY ANALYSIS

Our main goal in this section is to study the fluctua-
tions in the number of inactivated fragments m(s,t) of
size s in the limit ¢ — co. We could determine the prob-
ability of any fluctuation if we knew the probability dis-
tribution P(py,p2,...,pm), Where p, is the probability
of finding a fragment of size n in the interval [(n — 1)I, nl]
and ! = so/M is the size of the bin when we divide the
range of possible fragment sizes in M bins. Note that
P1+p2+--+pm = 1—po. Here pop < 1 is a con-
stant probability that no fragment exists at the end of
the process.

Unfortunately, we cannot determine P(p1,p2,...,Pnm)
in the majority of cases of interest. But we
can obtain some information about the distribution
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P(p1,p2,...,pm) by calculating the moments of the ex-
perimental distribution Q(kq, k2, ..., kar) of fragments at
the end of the process, where k,, is the number of frag-
ments in the nth bin. These distributions are related
through

Q(ky, k2, ... knr)
N!
= | dpy ---
kl!---kM!/ P1
X/t@MP@umwanm?-~p% » o (28)

where N = ky +ka + -+ + kp. In the limit N — oo we
have
kn

Dn ~

(29)

However, in our case this is not true because N is fi-
nite and we have to find another way to relate k,, and
Pm. This can be accomplished by using the generating
function [23]

¢(zlyz2a s ’ZM)
e o]

=3 3 QUhr,. k) by (30)

N=0ki,....knp
P
— / dp1 . / dpM ; (pli »pM) (31)
—21p1 — T — ZMPM
The gth derivatives evaluated at z; = 1,...,2p = 1 give

us the gth moments of the distributions Q(k1, k2, ..., kar)
and P(p17p2) e apM):

(kb — 1) - (kn — g 4+ 1)) = 24P8)

Do (32)

where the average on the left-hand side is taken over
experimental realizations of the process and the one
on the right-hand side is taken over the distribution
P(p1,...,pm). This result is equivalent to the one ob-
tained by Bialas and Peschanski [24] for inclusive distri-
butions. Therefore when we calculate the factorial mo-
ments

— (kn(kn—l)"'(kn_Q+l))
q!(kn)q

from the experimental distribution Q(ky, ..
actually determining

F, (33)

. kar) we are

(p2)
(pn)?
from the theoretical distribution P(pi,...,pnm)-

The behavior of factorial moments (33) can tell us
much about the fluctuations of m(s,t). Particularly, if

(34)

F,~1%, 35
q

it indicates the existence of intermittency in the produc-
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tion of inactivated fragments. The scaling behavior in
Eq. (35) means the presence of fluctuations in all scales
and the absence of any characteristic correlation length.

This behavior is present in the a model [23,24], where
the probability of occupation of a bin of size [ is given by
the probability of occupation of a bin of size 2 times a
random variable with average value equal to 1, in such a
way that the probability of occupation of a bin of size [ =
L/2 generated at the vth stage of the cascade process,
by successive partitions of initial range L, is a product
of v independent random variables. This gives origin to
large fluctuations in the probability of occupation of bins
as well to the power law behavior (35).

In order to obtain the experimental realizations over
which the factorial moments (33) are averaged, we have
simulated the fragmentation-inactivation process with
mass loss. In our simulations we have dealt with ini-
tial fragment sizes equal to 1024, 2048, and 4096 and
with consumption rates a equal to 0.1, 0.5, and 0.9 with
a + b = 1.0 for both cases b, = b and b, = bs. We have
generated 10® samples to calculate the necessary average
values.

We have performed the vertical analysis [24,25], i.e., we
have calculated the factorial moments for different bins,
and the horizontal analysis [23,25], the average of (33)
over all bins. Our results are the following. The vertical
analysis shows that the factorial moments (33) saturate
for small bin sizes (large number of bins), as we can see
for the first bin in Fig. 1. Then we can argue that the ab-
sence of the power law behavior for the factorial moments
F, indicates that large fluctuations of the extent of the
ones in the a model are not present in the dynamics that

15-0 v T v 1 . ¥
10.0 E
InF i i
0.0 i 1 1 1 1 1 L
0.0 2.0 4.0 6.0 8.0

In M

FIG. 1. Log-log plots of the factorial moments Fy(M) ver-
sus the number of bins M in the vertical analysis for the
first bin with the inactivation rate b, = 0.5 s and an initial
fragment size equal to 2048. From the bottom to the top,
moments from ¢ = 2 to ¢ = 6 are shown.
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FIG. 2. Log-log plots of the factorial moments Fz(M) ver-
sus the number of bins M in the vertical analysis for the three
first bins, with the inactivation rate b, = 0.5 s and so = 2048.

generates the size distribution of inactivated fragments.
This may be confirmed by the fact that contrary to the
o model, the bins are not equivalent (see Fig. 2) since
the dynamics of the fragmentation-inactivation process
favors the production of small fragments, as can be seen
from Eqgs. (19) and (25) when ¢ — oco. In this case, bins
that contain small fragments have larger amplitude fluc-
tuations than the bins that contain large fragments; con-
sequently they give higher values to the moments. The
horizontal analysis in this case fails completely due to
this lack of equivalence between the bins and so does not
give the same results as the vertical analysis, as one can
see from Fig. 3. The same remarks can be made about
the case b, = b (see Figs. 4 and 5), where the vertical
analysis for the first bin and the horizontal analysis are
shown.

10-0 L T v T . T

0.0 2.0 4.0 6.0 8.0
InM

FIG. 3. Log-log plots of the factorial moments Fy(M) ver-
sus the number of bins M in the horizontal analysis. Here we
have bs = 0.5 s and so = 2048. From the bottom to the top,
moments from ¢ = 2 to ¢ = 6 are shown.
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FIG. 4. Log-log plots of the factorial moments F,(M) ver-
sus the number of bins M in the vertical analysis. Here we
have b, = 0.5 and so = 2048. From the bottom to the top,
moments from ¢ = 2 to ¢ = 6 are shown.

Our results indicate that no intermittent behavior is
present in the dynamics of fragmentation-inactivation
process, concerning the production of inactivated sites.
These results are in contradiction with the ones by Botet
and Ploszajczak [19,26] since in these works they have
considered a model similar to ours, where bonds are con-
sumed instead of sites, and have performed only a hori-
zontal analysis.

VI. SUMMARY

In this work we have considered several discrete one-
dimensional models of fragmentation. The mass of the
system decreases by the consumption of the sites and a
fragment can be entirely inactivated. The inactivation
breaks the cascade of fragmentation randomly. Exact
solutions for the average number of fragments n(s,t) have
been obtained for the two cases of the inactivation rate
bs of a fragment with s sites: (i) the inactivation rate
independent of the fragment size (b, = b) and (ii) the
inactivation rate proportional to the fragment size (b, =

FIG. 5. Log-log plots of the factorial moments Fy(M) ver-
sus the number of bins M in the horizontal analysis for the
case by = 0.5. Here the initial size is so = 2048. From the
bottom to the top, moments from g = 2 to ¢ = 6 are shown.

as). The scaling behavior of n(s,t) has been discussed
for the active and inactive fragments based on analytical
results. We studied also the fluctuations in the cluster
size distribution for ¢t — oo.

When the inactivation rate is independent of the frag-
ment size, the active fragments distribution is the same
as the one obtained for the model without inactivation
except by a factor exp(—bt), where b is the constant in-
activation rate. If the inactivation rate is proportional to
the fragment size, the distributions of active and inactive
fragments are very different from the previous case. The
inactive fragment distributions at the end of the process
do not present intermittency for both cases.
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